Техногенные катастрофы. Меры предотвращения техногенных аварий Техногенные катастрофы последствия и пути решения


Cамое страшное происходит в том случае, когда имеет место техногенная катастрофа. Чаще всего это происходит по вине человека. Постоянная бесхозяйственность, безалаберность, отсутствие элементарной ответственности может привести порой к ужасающим последствиям. Именно поэтому, тема Техногенной катастрофы является более чем актуальной в настоящее время

Введение. ……………………………………………………………. 3 стр.
1.Техногенная катастрофа и её виды. ……………………………… 4 стр.
2.Причины и последствия техногенных аварий. …………………… 7 стр.
3.Меры и средства предотвращения техногенных аварий. ……… 15 стр.
Заключение. ………………………………………………………. 19 стр.
Список используемой литературы. …………………………….. 20 стр.

Работа содержит 1 файл

13 ноября 2002 года во время сильного шторма у берегов Испании нефтяной танкер «Престиж», перевозивший 77 000 тонн горючего, получил повреждения. В результате шторма «Престиж» сломался пополам, и 20 миллионов галлонов (более 75 тысяч кубических метров) мазута вылились в море. Устранение последствий этой катастрофы обошлось в 12 миллиардов долларов США.

1 февраля 2003 года во время возвращения на Землю взорвался космический шаттл «Колумбия». Причиной аварии стал отлетевший фрагмент обшивки термозащиты. Стоимость самого шаттла составляла 2 миллиарда долларов США. На расследование катастрофы была потрачена сумма в 500 миллионов долларов США, что сделало это расследование самым дорогостоящим в истории авиации. Общая стоимость катастрофы, согласно данным NASA, составила 13 миллиардов долларов США.

26 августа 2004 года на мосту в Германии автомобиль столкнулся с бензовозом, который перевозил 32 тысячи литров топлива. В итоге бензовоз вылетел на ограждение, упал с высоты 90 футов и взорвался, повредив мост. Ремонт моста обошелся в 40 миллионов долларов США, а на его полную замену понадобилась сумма в 318 миллионов долларов США.

23 февраля 2008 года произошел самый дорогой несчастный случай в истории авиации. «B-2 Spirit» (Stealth Bomber) рухнул на землю вскоре после вылета с военной базы на острове Гуам. Следователи пришли к выводу, что причиной аварии стал сбой в системе управления полетом, произошедший из-за попадания влаги. Всего на вооружении ВВС США осталось 20 таких самолетов. Оба пилота успешно катапультировались.

12 сентября 2008 года в Калифорнии пассажирский поезд компании «Метролинк» столкнулся с грузовым составом компании «Юнион Пасифик». Причиной аварии стала невнимательность машиниста «Метролинк», отвлекшегося на SMS, из-за чего поезд проехал на красный свет. В результате 25 человек погибло, а денежные потери компания «Метролинк» составили 500 миллионов долларов США, включая выплаты родственникам погибших пассажиров.

В конце уходящего века техногенные катастрофы происходят гораздо чаще, чем в начале. И это, с одной стороны, явно связано со стремительным развитием научно-технического прогресса, создающего "технические шедевры" с точки зрения мощности, вариантов электронного управления, скоростей и тому подобное. Техногенные катастрофы - страшная дань, которую человечество платит за прогресс. Они происходят с учащающейся периодичностью и с кровавыми последствиями, верхний предел которых никто не в состоянии представить.

Для обеспечения безопасности, в частности на производстве, во многих странах разрабатываются специальные законодательные акты, директивы, стандарты, регламентирующие правила и мероприятия по предупреждению аварийных ситуаций. Во всех высокоразвитых странах в последние годы уделяется все большее внимание совершенствованию системы подготовки кадров, особенно руководителей высоко рискованных производств, разнообразных служб безопасности, экспертизы и страхования.

3.Меры и средства предотвращения техногенных аварий.

При крупных авариях и катастрофах организация работ по ликвидации последствий проводится с учетом обстановки, сложившейся после аварии или катастрофы, степени разрушения и повреждения зданий и сооружений, технологического оборудования, агрегатов, характера аварий на коммунально-энергетических сетях и пожаров, особенностей застройки территории объекта и других условий.

Работы по организации ликвидации последствий аварий и катастроф проводятся в сжатые сроки: необходимо быстро спасти людей, находящихся под обломками зданий, в заваленных подвалах, и оказать им экстренную медицинскую помощь, а также предотвратить другие катастрофические последствия, связанные с гибелью людей и потерей большого количества материальных ценностей.

С возникновением аварии или катастрофы начальник гражданской обороны на основании данных разведки и личного наблюдения принимает решение на ликвидацию последствий и ставит задачи формированиям.

Начальники участков руководят спасательными и неотложными аварийно-восстановительными работами. Они указывают командирам формирований наиболее целесообразные приемы и способы выполнения работ, определяют материально-техническое обеспечение, сроки окончания работ и представляют донесения об объеме выполненных работ, организуют питание, смену и отдых личного состава формирований.

Мероприятия по предупреждению крупных аварий и катастроф. Крупные производственные аварии и катастрофы наносят большой ущерб народному хозяйству, поэтому обеспечение безаварийной работы имеет исключительно большое государственное значение. Современное промышленное предприятие является сложным инженерно-техническим комплексом. Успех его работы во многом зависит от состояния других предприятий отрасли, объектов смежных отраслей, обеспечивающих поставки по кооперации, а также от состояния энергоснабжения, транспортных коммуникаций, связи и т. п. Мероприятия по предупреждению аварий и катастроф являются наиболее сложными и трудоемкими. Они представляют комплекс организационных и инженерно-технических мероприятий, направленных на выявление и устранение причин аварий и катастроф, максимальное снижение возможных разрушений и потерь в случае, если эти причины полностью не удается устранить, а также на создание благоприятных условий для организации и проведения, спасательных и неотложных аварийно-восстановительных работ.

Наиболее эффективным мероприятием является закладка в проекты вновь создаваемых объектов планировочных, технических и технологических решений, которые должны максимально уменьшить вероятность возникновения аварий или значительно снизить материальный ущерб в случае, если авария произойдет. Так, для снижения пожарной опасности предусматривается уменьшение удельного веса сгораемых материалов. При проектировании новых и реконструкции существующих систем водоснабжения учитывается потребность в воде не только для производственных целей, но и для случая возникновения пожара. Подобные решения разрабатываются и по другим элементам производства. Учитываются - требования охраны труда, техники безопасности, правила эксплуатации энергетических установок, подъемно-кранового оборудования, емкостей под высоким давлением и т. д.

Таким образом, эти мероприятия разрабатываются и внедряются комплексно, с охватом всех вопросов, от которых зависит безаварийная работа объектов, с учетом их производственных и территориальных особенностей, с привлечением всех звеньев управления производственной деятельностью.

Средства предотвращения техногенных аварий:

1.Средства взрывозащиты герметичных систем .

Любое оборудование повышенного давления должно быть укомплектовано системами взрывозащиты, которые предполагают:

Применение оборудования, рассчитанного на давление взрыва;

Применение гидрозатворов, огнепреградителей, инертных или паровых завес;

Защиту аппаратов от разрушения при взрыве с помощью устройств аварийного сброса давления (предохранительные мембраны и клапаны, быстродействующие задвижки, обратные клапаны и т.д.).

Взрывозащита систем повышенного давления достигается также организационно-техническими мероприятиями; разработкой инструктивных материалов, регламентов, норм и правил ведения технологических процессов; организацией обучения и инструктажа обслуживающего персонала; контролем и надзором за соблюдением норм технологического режима, правил и норм техники безопасности, промышленной санитарии и пожарной безопасности и т.п.

Трубопроводы . Для того чтобы внешний вид трубопровода указывал на свойства транспортируемой среды, введена их опознавательная (сигнальная) окраска (ГОСТ 1402-69).
Например: вода - зелёный, воздух - синий, щёлочи - фиолетовые и т.д. Для обозначения вида опасности транспортируемого по трубопроводу вещества на его поверхность дополнительно наносят сигнальные кольца. Их число определяется степенью опасности. Кольца предусмотрены: красного цвета - для взрывоопасных; зелёного цвета - для безопасных и нейтральных веществ; жёлтого цвета - для токсичных веществ, а также глубокого вакуума, высокого давления.
Все трубопроводы после монтажа и периодически в процессе эксплуатации подвергаются гидравлическим испытаниям на прочность при пробном давлении на 25% превышающем рабочее, но не менее 0,2 Мпа. Предохранительные устройства. Каждый сосуд или ёмкость должен дополнительно быть снабжён устройством от повышения давления выше допустимого.

В качестве предохранительных устройств применяются:

1) предохранительные мембраны - предельная простота их конструкции характеризует их как самые надёжные из всех существующих средств взрывозащиты, кроме того они практически не имеют ограничений по пропускной способности. Хотя у них есть свои существенные недостатки, что после срабатывания защищаемое оборудование остаётся открытым, что приводит к остановке оборудования и выбросу в атмосферу содержимого аппарата;

2) взрывные клапаны - использование их на технологическом оборудовании даёт возможность устранения негативных последствий, так как после срабатывания и сброса необходимого количества газа через взрывной клапан его сбросное отверстие вновь закрывается, обеспечивая тем самым продолжительность работы оборудования.
К их недостатку следует отнести большую инерционность по сравнению с мембранами, значительную сложность конструкции, а также недостаточную герметичность;

3) пружинные предохранительные клапаны являются самыми распространёнными в настоящее время средством защиты технологического оборудования от взрыва. Однако и они имеют ряд существенных недостатков, в основном определяющихся большой инерционностью как грузовых, так и пружинных конструкций клапанов.

С системами находящимися под давлением, человек сталкивается не только в промышленности, но и в быту. Мы используем ёмкости и трубопроводы, содержащие пожаро- взрыво- опасные среды или среды находящиеся под повышенным давлением, такие как бытовые газовые баллоны, различные косметические распылители, трубопроводы с горячей и холодной водой и т.д.
При эксплуатации данного вида оборудования необходимо соблюдать меры безопасности аналогичные тем, которые соблюдаются и на производственных условиях.

2.Пожарная защита производственных объектов.

Автоматическая пожарная сигнализация является важной мерой предотвращения крупных пожаров, так как время между возникновением пожара и приезда пожарной бригады проходит много, что в большинстве случаев приводит к полному охвату пламенем помещения. Основная задача автоматической пожарной сигнализации - обнаружение начальной стадии пожара, передача извещения о месте и времени его возникновения и при необходимости включения автоматических систем пожаротушения и дымоудаления. Функционально автоматическая пожарная сигнализация состоит из приёмно-контрольной станции, которая через сигнальные линии соединена с пожарными извещателями.
Задача сигнальных извещателей является преобразование различных проявлений пожара в электрические сигналы. Скорость срабатывания автоматической пожарной сигнализации в основном определяется скоростью срабатывания первичных извещателей. В настоящее время наиболее часто используются тепловые, дымовые, световые и звуковые пожарные извещатели. Предотвращение развития пожара зависит не только от скорости его обнаружения, но и от выбора средств и способов пожаротушения. Выбор средств и способов пожаротушения.

Для подавления процесса горения можно снижать содержание горючего компонента, окислителя (кислорода воздуха), снижать температуру процесса или увеличить энергию активации реакции горения. В соответствии с этим в настоящее время при тушении пожаров используют один из следующих основных способов:

Изоляция очага горения от воздуха или снижение путём разбавления воздуха негорючими газами, концентрации кислорода в воздухе до значения, при котором не может происходить процесс горения;

Охлаждение очага горения ниже определённых температур (температур самовоспламенения, воспламенения и вспышки горючих веществ и материалов);

Интенсивное ингибирование (торможение) скорость химической реакции окисления;

Механический срыв пламени в результате воздействия на него сильной струи газа или жидкости;

Создание условий огнепреграждения, при которых пламя вынуждено распространяться через узкие каналы.

Для реализации перечисленных способов тушения пожаров используют различные огнетушащие вещества. К ним относятся в первую очередь вода самый дешёвый и доступный материал, песок, пожарные щиты с оборудованием, огнетушители являются одним из наиболее эффективных первичных средств пожаротушения, инертные разбавители применяются для объёмного тушения, последнее время для тушения пожаров всё более широко применяют огнетушащие порошки. Многие огнетушащие вещества, применяемые в автоматических системах пожаротушения, повреждают технологические установки. Поэтому выбор типа огнетушащего вещества должен определяться не только скоростью и качеством тушения пожара, но и необходимостью обеспечить минимальное суммарное повреждение, которое может быть причинено зданию и оборудованию.

Заключение.

Развитие науки, техники и технологии вызывает непредвиденные последствия. Побочные результаты научно-технического прогресса создают серьезные угрозы жизни и здоровью, состоянию генетического фонда людей. Увеличилось вероятность возникновения чрезвычайных ситуаций техногенного характера.
Немалую провоцирующую и стимулирующую роль в амбициях человека по отношению к природе сыграли технический прогресс, особенно бурный в ХIХ-ХХ столетиях, интенсивное развитие промышленно-энергетического потенциала, что привело к существенному повышению материального уровня жизни людей, ее комфортности. Следует отметить, что до последнего времени редко кто задумывался над опасными необратимыми последствиями этого процесса. Поставив перед собой задачу покорения природы, пользования благами все новых и новых технических достижений за счет ее нещадной эксплуатации, человечество, по существу, вступило на гибельный путь и пока еще продолжает по нему идти, несмотря на предостережения. Первый звонок-предостережение земляне получили в 1912 г. с гибелью «непотопляемого "Титаника"», второй - в 1986 г. (Чернобыльская катастрофа). Но в поведении человека этот сигнал тревоги ничего не изменил к лучшему. Остается ждать третьего звонка, но как бы он не стал и последним. Незащищенность человечества во всех функционирующих структурах системы жизнеобеспечения, складывавшейся тысячелетиями, становится угрожающей.
Казалось бы, по мере развития цивилизации опасности и угрозы существованию человечества, странам и народам, лично каждому будут ослабевать. Но происходит обратное. Человек, оставаясь существом разумным, и человечество, обладая коллективным разумом, оказались неспособными осознать складывающиеся реальности, адекватно среагировать на новые угрозы в силу легкомыслия, беспечности, отсутствия информации или других обстоятельств. Именно собственным поведением людей объясняется катастрофичность нынешней ситуации в мире, подошедшем к роковой черте, когда перед цивилизацией встал выбор: либо погибнуть, либо, используя накопленный потенциал, выйти на принципиально иные решения относительно своего существования и развития. За беспечность надо расплачиваться. И в этом плане катастрофы являются не только предостережением, но и возмездием за неразумное, безнравственное поведение.

Изобретение относится к проблемам экологии и защиты окружающей среды от последствий техногенных катастроф. Обеспечивает безопасность эксплуатации объектов хранения и переработки вредных веществ. Сущность изобретения: способ включает мероприятия по сбору загрязняющих веществ. Согласно изобретению под промышленным объектом, являющимся источником загрязнения окружающей природной среды, подземных и грунтовых вод, в процессе его эксплуатации бурят, по меньшей мере, одну горизонтальную двухустьевую скважину. Устанавливают перфорированные обсадные колонны или фильтрующие трубы. Постоянно или периодически контролируют наличие в скважине загрязняющих веществ и при их наличии производят откачку. Дополнительно с одной стороны, например против водоема или по периметру объекта, возводят подземный барьер локализации загрязнения. Для этого бурят одну или несколько горизонтальных двухустьевых скважин, расположенных друг над другом. Устанавливают перфорированные обсадные колонны. Цементируют пространство между ними. 1 з.п. ф-лы, 4 ил.

Изобретение относится к проблемам экологии и защиты окружающей среды от последствий техногенных катастроф. Интенсивное развитие нефтегазового комплекса страны обуславливает освоение и ввод в действие крупнейших нефтяных и газовых месторождений, широкомасштабное строительство сетей мощных нефте- и газопродуктов, насосных станций и объектов наземного базирования для хранения и переработки продуктов. Указанные обстоятельства выдвигают ряд требований обеспечения безопасности эксплуатации этих объектов. Все сказанное выше относится в полной мере и к объектам хранения и переработки других вредных химических веществ: фосфатов, нитратов и т. д. Вредное воздействие нефтепродуктов и ядовитых веществ может реализоваться двумя способами: либо в виде небольших, но длительно происходящих утечек продукта или как выброс больших объемов этих веществ в результате аварии. В любом случае вредные вещества накапливаются в подземных и грунтовых водах и часто выходят в открытые водоемы. Известны многочисленные способы предотвращения техногенных катастроф объектов хранения и переработки вредных веществ, например нефтепродуктов, описанные в книге И.И. Мазура "Экология строительства объектов нефтяной и газовой промышленности". - М.: Недра, 1991, с. 18 и 19. Это в основном научные и чисто теоретические мероприятия, не содержащие конкретных технических решений по предотвращению катастроф и уменьшению их вредных последствий: 1. Научное обеспечение охраны окружающей среды при строительстве нефтегазовых объектов. 2. Нормативное и проектное обеспечение охраны окружающей среды. 3. Организационное обеспечение природоохранной деятельности в отрасли. 4. Расширение агитации, пропаганды, обучения и воспитания по вопросам охраны окружающей среды. Недостатки этих мероприятий очевидны: все они являются чисто организационными и не содержат ни одного конкретного технического или технологического решения. Известны также технические мероприятия для предотвращения техногенных катастроф, например организация сбора загрязнений в специальные емкости с их последующей вывозкой, описанные в книге Мазура И.И. Экология строительства объектов нефтяной и газовой промышленности. - М.: Недра, 1991, с. 54 и 55 (прототип). Недостаток этого мероприятия заключается в том, что в случае прорыва и выброса вредных веществ на слой почвы они уходят в подземные и грунтовые воды и для их извлечения требуется бурение многочисленных вертикальных скважин для сбора этих веществ, а также в их прорыве и истечении в открытые водоемы с отрицательными экологическими последствиями. Задача создания изобретения - обеспечение безопасности эксплуатации объектов хранения и переработки вредных веществ. Решение указанной задачи достигнуто за счет того, в способе предотвращения техногенных катастроф, включающем мероприятия по сбору загрязняющих веществ в зоне промышленного объекта, являющегося источником загрязнения окружающей природной среды, подземных и грунтовых вод, в процессе его эксплуатации бурят, по меньшей мере, одну горизонтальную двухустьевую скважину под этим объектом, устанавливают перфорированные обсадные колонны или фильтрующие трубы, постоянно или периодически контролируют наличие в скважине загрязняющих веществ и при их наличии производят откачку. Дополнительно с одной стороны, например против водоема или по периметру объекта, возводят подземный барьер локализации загрязнения. Ддля этого бурят одну или несколько горизонтальных двухустьевых скважин, расположенных в вертикальной плоскости, устанавливают перфорированные обсадные колонны и цементируют пространство между ними. Патентные исследования показали, что предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью. Сущность изобретения поясняется на чертежах фиг.1 - 4, где: на фиг. 1 приведена схема реализации способа для нефтегазового объекта, например нефтехранилища, на фиг.2 - это же вариант реализации способа в плане, на фиг. 3 - пример реализации способа с применением подземного барьера локализации загрязнения, на фиг. 4 - пример реализации способа с подземным барьером локализации загрязнения в плане. ПРИМЕРЫ РЕАЛИЗАЦИИ СПОСОБА Пример 1 До строительства или в процессе эксплуатации промышленного объекта 1, являющегося источником загрязнения окружающей среды (фиг.1), возведенного на слое почвы 2, под которым находится песок 3 и глина 4, была пробурена, по меньшей мере, одна горизонтальная двухустьевая скважина 5. Эти (эта) скважины 5 имеют по два устья 6. В скважины 5 установлены перфорированные обсадные колонны (фильтрующие трубы) 7 с отверстиями 8. Устья 6 скважин 5, расположенные с одной стороны объединены коллектором 9, к коллектору 9 присоединен откачивающий насос 10. В скважинах установлены датчики контроля загрязнения (на фиг.1...4 датчики не показаны). В процессе эксплуатации постоянно при помощи датчиков или периодически путем взятия проб контролируется наличие вредных веществ в грунтовых и подземных водах и при их повышении концентрации свыше предельно допустимых норм включают откачивающий насос 10, который вместе с грунтовыми водами откачивает вредные вещества. Пример 2 Если объект находится на берегу водоема (фиг.2), то велика вероятность попадания этих веществ в водоемы. Со стороны водоема возводят подземный барьер локализации загрязнения 11. Для этого дополнительно бурят или одну или несколько горизонтальных двухустьевых скважин 5, расположенных в вертикальной плоскости и имеющих по два устья 6. В эти горизонтальные двухустьевые скважины 5 устанавливают перфорированные обсадные трубы 7 с отверстиями 8 и заливают пространство между ними цементом. Нижняя горизонтальная двухустьевая скважина 5 выполняется на уровне глины (скальных пород) другого водонепроницаемого слоя) 4. Вредные вещества задерживаются барьером локализации загрязнения 11, который может быть выполнен вертикально, как это показано на фиг.3, или под углом к горизонту. Применение изобретения позволило: 1. Повысить безопасность эксплуатации объектов хранения и переработки вредных веществ за счет того, что технологические и конструктивные природосберегающие решения при сооружении объектов осуществляются до возникновения аварийной ситуации. 2. Обеспечить сооружение горизонтальных скважин на действующих объектах. 3. Сохранить экологию окружающей среды в районе объекта повышенной опасности и вокруг него. Поверхностный слой почвы при бурении горизонтальных скважин не разрушается. 4. В случае прорыва вредных веществ в грунт своевременно обнаружить утечку и практически полностью извлечь их, отфильтровать для повторного использования или уничтожить. 5. Предотвратить прорыв вредных веществ в водоемы.

Формула изобретения

1. Способ предотвращения техногенных катастроф, включающий мероприятия по сбору загрязняющих веществ, отличающийся тем, что в зоне промышленного объекта, являющегося источником загрязнения окружающей природной среды, подземных и грунтовых вод, в процессе его эксплуатации бурят, по меньшей мере, одну горизонтальную двухустьевую скважину под этим объектом, устанавливают перфорированные обсадные колонны или фильтрующие трубы, и постоянно или периодически контролируют наличие в скважине загрязняющих веществ и при их наличии производят откачку. 2. Способ предотвращения техногенных катастроф по п. 1, отличающийся тем, что дополнительно с одной стороны, например против водоема или по периметру объекта, возводят подземный барьер локализации загрязнения, для этого бурят одну или несколько горизонтальных двухустьевых скважин, расположенных друг над другом, устанавливают перфорированные обсадные колонны и цементируют пространство между ними.

Похожие патенты:

Изобретение относится к строительству и эксплуатации подземных и наземных сооружений и может быть использовано для изучения строения и динамики земной поверхности и осуществления прогноза интенсивности и активизации деформационных процессов, что очень важно при поиске и разведке месторождений полезных ископаемых, например нефтегазоносных структур

Изобретение относится к нефтяной и газовой промышленности, а именно к области оценки и прогноза продуктивности углеводородных залежей и месторождений, в том числе на ранней или поздней стадии освоения нефтяных и газовых ресурсов, и может быть использовано для многоцелевого изучения и определения балансовых запасов нового вида углеводородного сырья для его промышленной добычи и использования в нефтегазовых отраслях

Об аварии на нефтяной платформе Deepwater Horizon человечество никогда не забудет. Взрыв и пожар случились 20 апреля 2010 года в 80 километрах от побережья штата Луизиана, на месторождении Макондо. Разлив нефти стал крупнейшим в истории США и фактически загубил Мексиканский залив. Мы вспомнили крупнейшие техногенные и экологические катастрофы мира, некоторые из которых чуть ли не страшнее трагедии Deepwater Horizon.

Можно ли было избежать аварии? Техногенные катастрофы часто происходят как следствие природных катастроф, но кроме того - из-за изношенного оборудования, жадности, халатности, невнимательности... Память о них служит важным уроком для человечества, потому что природные катастрофы могут повредить людям, но не планете, а вот техногенные несут угрозу абсолютно всему окружающему миру.

15. Взрыв на заводе удобрений в городе Уэст - 15 жертв

17 апреля 2013 года произошел взрыв на заводе по производству удобрений в техасском городе Уэст. Взрыв прогремел в 19:50 по местному времени и он полностью уничтожил завод, который принадлежал местной компании Adair Grain Inc. Взрывом были разрушены расположенные рядом с заводом школа и дом престарелых. Серьёзно пострадали около 75 зданий города Уэст. В результате взрыва погибли 15 человек, около 200 человек получили ранения. Изначально на заводе произошёл пожар, а взрыв случился в тот момент, когда пожарные пытались справиться с огнём. По меньшей мере 11 пожарных погибло.

По словам очевидцев, взрыв был настолько сильным, что его было слышно примерно в 70 км от завода, а Геологическая служба США зафиксировала колебания почвы магнитудой 2,1. "Это было похоже на взрыв атомной бомбы", - говорили очевидцы. Жителей ряда районов рядом с Уэстом эвакуировали из-за утечки аммиака, используемого при производстве удобрений, власти предупредили всех об утечке токсичных веществ. Над Уэстом была введена бесполётная зона на высоте до 1 км. Город напоминал район военных действий...

В мае 2013 года по факту взрыва было заведено уголовное дело. Расследование показало, что компания хранила химические вещества, которые вызвали взрыв, с нарушение требований безопасности. Комитет по химической безопасности США установил, что компания не предприняла необходимых мер для предотвращения пожара и взрыва. Кроме того, на тот момент не существовало правил, которые запрещали бы хранение нитрата аммония вблизи населенных пунктов.

14. Затопление Бостона патокой - 21 жертва

Затопление Бостона патокой случилось 15 января 1919 года после того, как в бостонском районе Норт-энд взорвался гигантский резервуар с мелассой, и волна сахаросодержащей жидкости пронеслась по улицам города с большой скоростью. Погиб 21 человек, около 150 попали в больницы. Катастрофа произошла на алкогольном заводе Purity Distilling Company во времена «сухого закона» (ферментированная меласса в то время широко использовалась для получения этанола). Накануне введения полного запрета владельцы старались успеть сделать как можно больше рома...

Видимо, из-за усталости металла в переполненном резервуаре с 8700 м³ патоки разошлись соединённые заклёпками листы металла. Земля дрогнула, и на улицы хлынула волна патоки высотой до 2 метров. Давление волны было настолько велико, что сдвинуло с путей грузовой состав. Близлежащие здания были затоплены на метровую высоту, некоторые обрушились. Люди, лошади, собаки вязли в липкой волне и гибли от удушья.

В зоне катастрофы был развёрнут передвижной госпиталь «Красного креста», в город вошло подразделение ВМС США - спасательная операция длилась неделю. Патоку убирали с помощью песка, который впитывал вязкую массу. Хотя владельцы фабрики винили во взрыве анархистов, горожане добились от них выплат общей суммой в $ 600 тыс (сегодня это примерно $ 8,5 млн). По словам бостонцев, даже сейчас в знойные дни от старых домов исходит приторный запах карамели...

13. Взрыв на химзаводе Phillips в 1989 -23 жертвы

Взрыв на химзаводе Phillips Petroleum Company случился 23 октября 1989 года, в Пасадене, штат Техас. Из-за оплошности сотрудников произошла крупная утечка горючего газа, и произошёл мощнейший взрыв, эквивалентный двум с половиной тоннам динамита. Бак с 20 000 галлонами газа изобутана взорвался и цепная реакция вызвала еще 4 взрыва.
Во время планового технического обслуживания, на клапанах случайно закрыли воздуховоды. Таким образом, в диспетчерской отображалось, что клапан открыт, в то время как он был как закрытым. Это привело к образованию облака пара, которое взорвалось от малейшей искры. Первоначальный взрыв зарегистрирован равным 3,5 баллам по шкале Рихтера и осколки взрыва были найдены в радиусе 6 миль от взрыва.

Многие из пожарных гидрантов вышли из строя, сильно упало давление воды в оставшихся гидрантах. Пожарным потребовалось более десяти часов, чтобы взять ситуацию под контроль и полностью потушить пламя. Погибло 23 человека, ещё 314 получили ранения.

12. Пожар на пиротехнической фабрике в Энсхеде в 2000 - 23 жертвы

13 мая 2000 года в результате пожара на на пиротехнической фабрике S.F. Fireworks в голландском городе Энсхеде (Enshede) случился взрыв, погибли 23 человека, в том числе четверо пожарных. Пожар начался в центральном здании и распространился на два полных контейнера с фейерверками, незаконно хранящихся за пределами здания. Несколько последующих взрывов произошло с самым большим взрыв чувствовал себя так далеко, как 19 миль.

Во время пожара сгорела и была разрушена значительная часть района Ромбек - сгорели 15 улиц, повреждено 1500 домов, и уничтожено 400 домов. В дополнение к гибели 23 человек, 947 человек получили ранения и 1250 человек остались без крова. Пожарные расчеты прибыли из Германии, чтобы помочь в борьбе с огнем.

Когда S.F. Fireworks построили пиротехническую фабрику в 1977 году, она была расположена далеко от города. По мере того как город рос, новое недорогое жилье в окружило склады, что и повлекло ужасные разрушения, травмы и смерти. Большинство местных жителей не имели ни малейшего представления, что они жили в такой непосредственной близости от пиротехнического склада.

11. Взрыв на химзаводе в Фликсборо - 64 жертв

В городе Фликсборо, Англия 1 июня 1974 года произошел взрыв, погибли 28 человек. Авария случилась на заводе «Нипро», который занимался производством аммония. Катастрофа причинила материальный ущерб на колоссальную сумму - 36 миллионов фунтов стерлингов. Такой катастрофы английская промышленность еще не знала. Химический завод в Фликсборо практически перестал существовать.
Химический завод около поселка Фликсборо специализировался на выпуске капролактама - исходного продукта для получения синтетического волокна.

Авария случилась так: разорвался обходный трубопровод, соединявший реакторы 4 и 6, и пар начал вырываться из отводов. Образовалось облако паров циклогексана, содержащее несколько десятков тонн вещества. Источником возгорания облака послужил, вероятно, факел водородной установки. Из-за аварии на заводе в воздух была выброшена взрывоопасная масса разогретых паров, для воспламенения которых достаточно было малейшей искры. Через 45 минут после аварии, когда грибообразное облако достигло водородной установки, произошел мощный взрыв. Взрыв по своей разрушительной силе был эквивалентен взрыву 45 т тротила, подорванного на высоте 45 м.

Около 2000 зданий, находившихся за пределами предприятия, были повреждены. В деревне Амкоттс, находящейся на другом берегу реки Трент, из 77 сильно пострадало 73 дома. Во Фликсборо, расположенном на расстоянии 1200 м от центра взрыва, из 79 домов разрушилось 72. От взрыва и последующего пожара погибло 64 человека, 75 человек на предприятии и вне его получили травмы различной степени тяжести.

Инженеры завода под давлением хозяев компании "Нипро" нередко шли на отступления от установленного технологического регламента, игнорировали требования безопасности. Печальный опыт этой катастрофы показал, что на химических заводах необходимо иметь быстродействующую автоматическую систему пожаротушения, позволяющую не позднее чем через 3 секунды ликвидировать вогорания твердых химических веществ.

10. Разлив раскаленной стали - 35 жертв

18 апреля 2007 года 32 человек погибли и 6 получили ранения, когда ковш, содержащий расплавленную сталь, упал на заводе Qinghe Special Steel Corporation в Китае. Тридцать тонн жидкой стали, раскаленной до 1500 градусов по Цельсию упал с подвесного транспортера. Жидкая сталь прорвалась через двери и окна в соседнее помещение, где находились рабочие дежурной смены.

Пожалуй, самый ужасный факт, обнаруженный в ходе исследования этой катастрофы в том, что ее можно было бы предотвратить. Непосредственной причиной аварии стало неправомерное использование некондиционного оборудования. Следствие пришло к выводу, что имел место целый ряд недостатков и нарушений безопасности, которые способствовали аварии.

Когда аварийные службы добрались до места катастрофы, их остановил жар расплавленной стали, и они долго были не в состоянии добраться до жертв. После того, как сталь начала охлаждаться, они обнаружили 32 жертвы. Удивительно, но 6 человек чудом пережили эту аварию, и с тяжелейшими ожогами были доставлены в больницу.

9. Крушение состава с нефтью в Лак-Мегантик - 47 жертв

Взрыв состава с нефтью произошёл вечером 6 июля 2013 года в городке Лак-Мегантик в канадском Квебеке. Поезд, принадлежащий компании The Montreal, Maine and Atlantic Railway и перевозивший 74 цистерны с сырой нефтью, сошёл с рельсов. В результате несколько цистерн загорелись и взорвались. Известно о 42 погибших, ещё 5 человек числятся пропавшими без вести. В результате пожара, охватившего город, примерно половина зданий в центре города были уничтожены.

В октябре 2012 года на тепловозе GE C30-7 #5017 при ремонте двигателя, чтобы поскорее завершить ремонт, были применены эпоксидные материалы. В последующей эксплуатации эти материалы разрушились, тепловоз стал сильно дымить. Вытекающие горюче-смазочные материалы скапливались в корпусе турбокомпрессора, что привело к возгоранию в ночь крушения.

Поездом управлял машинист Том Хардинг. В 23:00 поезд остановился на станции Нант, на главном пути. Том связался с диспетчером и сообщил о неполадках с дизелем, сильном чёрном выхлопе; решение проблемы с тепловозом было отложено до утра, и машинист уехал ночевать в гостиницу. Поезд с заведённым тепловозом и опасным грузом был оставлен на ночь на необслуживаемой станции. В 23:50 в службу 911 поступило сообщение о пожаре на головном тепловозе. В нем не работал компрессор, и давление в тормозной магистрали снижалось. В 00:56 давление упало до такого уровня, что ручные тормоза не смогли удерживать вагоны и неуправляемый поезд ушёл под уклон к Лак-Мегантику. В 00:14 поезд на скорости 105 км/ч сошёл с рельсов и оказался в центре города. Вагоны сошли с рельсов, последовали взрывы и горящая нефть разлилась вдоль железной дороги.
Люди в ближайшем кафе, ощутив толчки земли, решили что началось землетрясение и спрятались под столами, в итоге они не успели убежать от огня... Эта железнодорожная катастрофа стала одной из самых смертоносных в Канаде.

8. Авария на Саяно-Шушенской ГЭС - не менее 75 жертв

Авария на Саяно-Шушенской ГЭС - промышленная техногенная катастрофа, произошедшая 17 августа 2009 года - "черный день" российской гидроэнергетики. В результате аварии погибло 75 человек, оборудованию и помещениям станции нанесён серьёзный ущерб, производство электроэнергии приостановлено. Последствия аварии отразились на экологической обстановке акватории, прилегающей к ГЭС, на социальной и экономической сферах региона.

На момент аварии ГЭС несла нагрузку в 4100 МВт, из 10 гидроагрегатов в работе находилось 9. В 8:13 местного времени 17 августа произошло разрушение гидроагрегата № 2 с поступлением через шахту гидроагрегата под большим напором значительных объёмов воды. Персонал электростанции, находившийся в машинном зале, услышал громкий хлопок и увидел выброс мощного столба воды.
Потоки воды быстро затопили машинный зал и помещения, находящиеся под ним. Все гидроагрегаты ГЭС были затоплены, при этом на работавших ГА произошли короткие замыкания (их вспышки хорошо видны на любительском видео катастрофы), выведшие их из строя.

Неочевидность причин аварии (по словам министра энергетики России Шматко, «это самая масштабная и непонятная авария гидроэнергетики, которая только была в мире») вызвала ряд версий, не нашедших подтверждения (от терроризма до гидроудара). В качестве наиболее вероятной причины аварии называют усталостные разрушения шпилек, возникшие в период работы гидроагрегата № 2 с временным рабочим колесом и недопустимым уровнем вибраций в 1981-83 годах.

7. Взрыв на "Пайпер Альфа" - 167 жертв

6 июля 1988 года платформа по добычи нефти в Северном море под названием "Пайпер Альфа" была разрушена в результате взрыва. Платформа “Пайпер Альфа”, установленная в 1976 году, бала самой большой конструкцией на площадке “Пайпер”, принадлежащей шотландской компании “Оксидентал Петролеум”. Платформа располагалась в 200 км к северо-востоку от Абердина и служила центром управления нефтедобычей на площадке.На платформе находилась вертолетная площадка и жилой модуль для 200 нефтяников, работающих посменно. 6 июля на “Пайпер Альфе” произошел неожиданный взрыв. Пожар, охвативший платформу, не дал персоналу даже возможности послать сигнал SOS.

В результате утечки газа и последующего взрыва погибло 167 человек из 226 находившихся в тот момент на платформе, только 59 осталось в живых. Понадобилось 3 недели, чтобы погасить огонь, при сильнейшем ветре (80 миль в час) и 70-футовых волнах. Окончательную причину взрыва установить так и не удалось. Согласно самой популярной версии, на платформе случилась утечка газа, в результате чего для пожара хватило малой искры. Авария на платформе Piper Alpha привела к серьезной критике и последующему пересмотру норм безопасности работ по добыче нефти в Северном море.

6. Пожар в Тяньцзине Биньхай - 170 жертв

В ночь на 12 августа 2015 года два взрыва вспыхнули на участке хранения контейнеров в порту Тяньцзинь. В 22:50 по местному времени начали поступать сообщения о пожаре на расположенных в порту Тяньцзиня складах фирмы «Жуйхай», занимающейся транспортировкой опасных химических веществ. Как выяснили позднее следователи, его причиной послужило самовозгорание высохшей и нагревшейся на летнем солнце нитроцеллюлозы. В течение 30 секунд после первого взрыва, произошел второй - контейнер с нитратом аммония. Местная сейсмологическая служба оценила мощность первого взрыва в 3 тонны тротилового эквивалента, второго - в 21 тонну. Прибывшие на место пожарные долго не могли остановить распространение огня. Пожары бушевали несколько дней и случилось еще 8 взрывов. Взрывы создали огромный кратер.

Взрывы привели к гибели 173 человек, 797 раненых, и 8 человек числятся пропавшими без вести. . Тысячи автомобилей Toyota, Renault, Volkswagen, Kia и Hyundai были повреждены. 7,533 контейнеры, 12,428 автомобилей и 304 здания были разрушены или повреждены. Помимо смерти и разрушения, ущерб составил $ 9 млрд. Выяснилось, что три многоквартирных дома были построены в радиусе одного километра от склада химических веществ, что запрещено китайским законодательством. Власти предъявили обвинения 11 чиновникам из города Тяньцзинь по делу о взрыве. Их обвиняют в халатности и злоупотреблении полномочиями.

5. Валь-ди-Ставе, прорыв плотины - 268 жертв

На севере Италии над деревней Ставе, рухнула плотина Валь-ди-Ставе 19 июля 1985 года. Авария уничтожила 8 мостов, 63 здания, погибло 268 человек. После катастрофы, в ходе расследования было установлено, что имело место плохое техническое обслуживание и малый запас эксплуатационной безопасности.

В верхней из двух плотин, из-за осадков труба для дренажа стала менее эффективной, она была засорена. Вода продолжала поступать в резервуар и давление в поврежденной трубе возрастало, также это вызвало давление на береговую породу. Вода начала проникать в почву, сжижаться в грязь и ослаблять берега, пока, наконец, не произошел размыв. Буквально за 30 секунд вода и грязевые потоки верхней плотины прорвались и хлынули в нижнюю плотину.

4. Обрушение террикона в Намбийи - 300 жертв

К 1990 году Намбийя, шахтерский поселок на юго-востоке Эквадора имел репутацию "агрессивной экосреды". Местные горы были изрыты горняками, пронизаны отверстиями от добычи полезных ископаемых, воздух влажный и наполненный химическими веществами, токсичные газы из шахты и огромный террикон.

9 мая 1993 года, большая часть горы угольного шлака в конце долины рухнула, и под оползнем погибли около 300 человек. 10,000 человек жили в поселке на площади около 1 квадратную мили. Большинство домов города были построены прямо на въезде в туннель на шахту. Специалисты давно предупреждали, что гора стала практически полой. Они говорили, что дальнейшая добыча угля приведет к оползням, и после нескольких дней проливных дождей почва размягчилась, и худшие прогнозы сбылись.

3. Техасский взрыв - 581 жертва

Техногенная катастрофа случилась 16 апреля 1947 года в порту города Техас-Сити, США. Пожар на борту французского судна «Гранкан» (Grandcamp) привёл к детонации около 2100 тонн нитрата аммония (аммиачной селитры), что повлекло за собой цепную реакцию в виде пожаров и взрывов на близлежащих кораблях и нефтехранилищах.

В результате трагедии погиб по меньшей мере 581 человек (включая всех, за исключением одного, сотрудников пожарной охраны Техас-Сити), более 5000 человек получили ранения, 1784 попали в больницы. Порт и значительная часть города были полностью разрушены, многие предприятия были сравнены с землей или сгорели. Более 1100 автомобилей были повреждены и 362 грузовых вагонов искорёжены - имущественный ущерб оценивается в 100 миллионов долларов. Эти события вызвали первый коллективный иск против правительства США.

Суд признал Федеральное правительство виновным в преступной халатности, совершенной правительственными агентствами и их представителями, вовлечёнными в производство, упаковку и маркирование аммиачной селитры, усугубленной грубыми ошибками в ее транспортировке, хранении, погрузке и противопожарных мерах. Было выплачено 1,394 компенсации общей суммой около $17 млн.

2. Бхопальская катастрофа -до 160,000 жертв

Это одна из самых страшных техногенных катастроф произошла в индийском городе Бхопал. В результате аварии на химзаводе, принадлежащем американской химической компании Union Carbide, и производящем пестициды, произошёл выброс ядовитого вещества метилизоцианата. Он хранился на заводе в трёх частично вкопанных в землю ёмкостях, каждая из которых могла вместить около 60 000 литров жидкости.
Причиной трагедии стал аварийный выброс паров метилизоцианата, который в заводском резервуаре нагрелся выше температуры кипения, что привело к повышению давления и разрыву аварийного клапана. В результате 3 декабря 1984 года в атмосферу было выброшено около 42 тонн ядовитых паров. Облако метилизоцианата накрыло близлежащие трущобы и железнодорожный вокзал, находящийся в 2 км.

Бхопальская катастрофа - крупнейшая по числу жертв в современной истории, повлёкшая немедленную смерть по крайней мере 18 тыс человек, из которых 3 тысячи погибли непосредственно в день аварии, а 15 тыс - в последующие годы. По другим данным, общее количество пострадавших оценивается в 150-600 тысяч человек. Большое число жертв объясняется высокой плотностью населения, несвоевременным информированием жителей об аварии, нехваткой медперсонала, а также неблагоприятными погодными условиями - облако тяжёлых паров разносилось ветром.

Union Carbide, ответственная за эту трагедию, в 1987 году в рамках внесудебного урегулирования выплатила жертвам $ 470 млн в обмен на отказ от претензий. В 2010 индийский суд признал семерых бывших руководителей индийского отделения компании Union Carbide виновными в халатности, повлекшей гибель людей. Осуждённые были приговорены к двум годам тюремного заключения и штрафу в размере 100 тыс рупий (примерно $ 2,100).

1. Трагедия на дамбе Баньцяо - 171 000 погибших

В этой катастрофе даже нельзя упрекнуть конструкторов плотины, она была рассчитана на сильные наводнения, но данное было совершенно беспрецедентным. В августе 1975 года в западной части Китая, во время тайфуна прорвало дамбу Баньцяо- погибло около 171,000 человек. Плотина была построена в 1950-х годах для производства электроэнергии и предотвращения наводнений. Инженеры разработали ее с запасом прочности на тысячу лет.

Но в те роковые дни в начале августа 1975 года, тайфун "Нина" сразу же произвел более 40 дюймов осадков, что превысило ежегодное общее количество осадков в этой области всего за один день. После нескольких дней еще более сильных дождей, плотина не устояла и была размыта 8 августа.

Прорыв дамбы вызвал волну высокой 33 футов, 7 миль в ширину, которая шла со скоростью 30 миль в час. В общей сложности более 60 плотин и дополнительных резервуаров были уничтожены из-за разрушения плотины Banqiao. Наводнение разрушило 5,960,000 зданий, сразу погубило 26,000 человек и еще 145,000 умерли позже в результате голода и эпидемий из-за стихийного бедствия.

Главные меры (усилия) человека по борьбе с авариями и катастрофами должны быть направлены на их профилактику и предупреждение. Принятые меры либо полностью исключают, либо локализуют техногенные аварии и катастрофы. В основе таких мер лежит обеспечение надежности технологического процесса.

  • Выполнение требований государственных стандартов и строительных норм и правил, которые направлены на то, чтобы максимально исключить возможность аварии.
  • Жесткая производственная дисциплина. Точное выполнение технологических процессов. Использование оборудования в строгом соответствии с его техническим назначением.
  • Дублирование и увеличение запасов прочности важнейших элементов производства.
  • Чёткая организация службы инспекции контроля и безопасности.
  • Тщательный подбор кадров, повышение практических знаний в объёме выполняемой работы.
  • Оценка условий производства с точки зрения возможности возникновения аварии.

Итак, мы увидели, что техногенные катастрофы детерминированы человеческим фактором, поэтому должна проводиться работа по их профилактике: вестись тестирование техники (механизмов, инженерных сетей) на вопрос её износа, проверяться дисциплина и профессионализм обслуживающего персонала.

Поскольку полностью предотвратить возможность техногенной катастрофы нельзя, то необходимо предусмотреть мероприятия по своевременному оповещению о её возможном начале, планы её локализации, эвакуации населения из пострадавшего района и организация помощи пострадавшим и выжившим в зоне катастрофы.

Возможные техногенные катастрофы в городе Магнитогорск Челябинской области


Проживая в промышленном городе с большим количеством объектов народного хозяйства, невольно задумаешься над вопросом: а какие техногенные катастрофы могут возникнуть? Вот лишь небольшой перечень объектов, которые представляют наибольшую опасность: ПАО «ММК », ОАО «ММК – Метиз », ОАО «МКЗ », Железнодорожная станция «Магнитогорск », ОАО «Магнитогорский молочный комбинат », ОАО «Магнитогорский мясокомбинат », ООО «Магнитогорский птицеводческий комплекс », очистные сооружения, Верхнеуральская плотина.
  • Федеральный закон № 68 от 21 дек. 1994 года «О защите населения от чрезвычайных ситуаций природного и техногенного характера »
  • постановление РФ от 21 мая 2007 г. № 304 «О классификации ЧС природного техногенного характера »
  • закон № 114 по Челябинской области «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера » от 29.05.1997г.
  • Постановление от 10.04.2001 г. «О создании центра мониторинга и прогнозирования ЧС природного и техногенного характера »

Еще в 2002 году Постановлением Главы города Магнитогорска был утверждён «Перечень техногенных и природных чрезвычайных ситуаций, характерных для г. Магнитогорска » , с указанием места возможного возникновения, зоны возможного поражения и сил, привлекаемых для устранения катастрофы:

Перечень довольно большой. И большая часть этих объектов представляет не только экономическую и социальную значимость, но и потенциальную опасность для здоровья и жизни людей. Несмотря на относительно благополучную статистику последних лет, существует реальная угроза возникновения чрезвычайных ситуаций природного и техногенного характера на территории города.


Это обусловлено действием ряда объективных и субъективных факторов: наличием потенциально опасных объектов; износом основных производственных фондов в промышленности и инженерных системах города; стихийными природными явлениями и рисками, возникающими в процессе хозяйственной деятельности либо связанными с накопленным экологическим ущербом.

Город Магнитогорск, благодаря особенностям своего географического положения и розы ветров, может быть подвержен следующим техногенным катастрофам в результате чрезвычайных происшествий на промышленных предприятиях города и других хозяйственных объектах:

  • Выброс аммиака и хлора, который может усугубиться пожарами и задымлением из-за возгорания взрывчатых веществ.
  • Заражение близлежащих территорий ядовитыми веществами, используемыми в птицеводческом комплексе и на других предприятиях.
  • Розлив серной и соляной кислоты.
  • Взрывы из-за утечки керосина, ГСМ и природного газа.
  • Прорыв Верхнеуральской плотины.

Таким образом, в создавшихся условиях угроза возникновения техногенной катастрофы на территории города Магнитогорска довольна значительна. Каждому типу катастрофы присущи свои особенности, характер поражений, объем и масштабы разрушений, величина бедствий и человеческих потерь.

Знание причин возникновения катастроф техногенного характер а позволяет при заблаговременном принятии мер защиты, при разумном поведении населения в значительной мере снизить все виды потерь. Все население должно быть готово к действиям в экстремальных ситуациях, уметь владеть способами оказания первой медицинской помощи пострадавшим.

Современный мир меняется с жуткой скоростью. Для обеспечения условий развития науки и техники строятся новые предприятия со сложными технологическими процессами. Эти новые технологические комплексы несут в себе нешуточную экологическую опасность. Ведь очень часто ученые и инженеры используют радиоактивные и сложные по составу химические вещества.

И хотя меры безопасности на таких предприятиях могут быть беспрецедентными, нужно, все таки, учитывать человеческий фактор. Человеку свойственно делать ошибки и уничтожать все вокруг себя.

В фантастических романах и кинофильмах можно часто увидеть специальные приборы, которые могут отследить опасные химические вещества и определить уровень загрязнения окружающей среды. До недавнего времени это было действительно лишь фантастикой. Да и многие писатели-фантасты до сих пор используют в своих произведениях такие «новшества» в качестве дополнительных «фишек». Многие не знают о том, что теперь различить на расстоянии утечку газа или токсичное вещество вполне возможно.

Заслуга разработки специальной камеры Excelis LWIR HIS принадлежит компании, название которой лежит в основе названия камеры – Excelis. Специалисты компании, работающие в области оборонных и информационных технологий, испытали первую в мире длинноволновую инфракрасную гиперспектральную камеру.

Применение камеры открывает широкие перспективы для военной и гражданской техники. Даже не смотря на текущие недостатки с системой охлаждения сенсоров, которые выявлены в ходе испытаний, сфера применения камер весьма внушительна. Сенсоры камеры способны охватить широкие площади и обнаружить целый ряд известных токсических веществ и даже взрывчатки, если она находится неглубоко под землей.

В данноевремя идет обработка полученных данных во время испытаний, но уже с уверенностью можно сказать, что компания Excelis будет продолжать свои разработки и совершенствовать систему, чтобы можно было выпускать портативные комплексы и устанавливать камеры на летательные аппараты, в том числе и беспилотные.
Сейчас проходят интенсивные работы по оснащению камер необходимым программным обеспечением, чтобы получить возможность обработки данных в режиме реального времени. Чтобы летательный аппарат мог передавать готовую информацию о найденных источниках опасности.

Применение камер даст возможность вести мониторинг состояния газопроводов, окружающего пространства вокруг технологических предприятий и даже можно будет проводить антитеррористические операции по обнаружению взрывчатых веществ. В скором времени, с применением камер Excelis, мир станет намного безопасней. Появляется реальная возможность предупредить техногенные катастрофы, а не реагировать только на происшедшие, сожалея о жертвах и причиненном уроне.